Middle East Technical University
Department of Mechanical Engineering

ME 413 Introduction to Finite Element Analysis

Chapter 3
Computer Implementation of 1D FEM

These notes are prepared by
Dr. Clineyt Sert
http://www.me.metu.edu.tr/people/cuneyt

csert@metu.edu.tr

These notes are prepared with the hope to be useful to those who want to learn and teach FEM. You are free to use
them. Please send feedbacks to the above email address.

3-1



Summary of Chapter 2

* |n Chapter 2 Ritz method was improved into FEM.
e Solution is not global anymore.

e Solution over each element is simple. Complicated 2D and 3D solutions on complex
domains can be obtained, by using necessary number of elements.

 Problems with multiple materials can be solved.

 Approximation function selection is very well defined and independent of BCs.

* But the procedure of Chapter 2 still have difficulties.

 Writing approximation functions one-by-one for each node is difficult. In 2D and 3D
it’ll be even more difficult.

* Approximation functions change when mesh changes.

* Symbolic math is limited and costly.

oy Exercise : Modify Example2_1v2.m code so that it asks the user to enter NE and
(] . . . .
@T works automatically. Using tic & toec commands, measure computation time for

NE =5, 10, 50, 100, 1000. Improve the speed of the code in any way you can.
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What Is This Chapter About?

«  We'll improve the solution procedure of Chapter 2 so that
e itis almost completely mesh independent
e approximation function calculations are easy
* symbolic calculations are avoided

e solution is efficient and very algorithmic

e To achieve these we’ll use
e Elemental weak form
 Master element concept

* Gauss Quadrature numerical integration

METU — Dept. of Mechanical Engineering — ME 413 Int. to Finite Element Analysis — Lecture Notes of Dr. Sert

3-3



Node Based Integral Calculation of Chapter 2

In FEM ¢’s have local support.

For linear elements, ¢’s are nonzero over at most two elements.

bi
, &3  e2 e-1 ‘ e e+l = e+2 .
i-3 i-2 i-1 [ i+1 i+2 i+3
Integral of the it" eqn. contains ¢; in all its terms (see slide 2-12).
But ¢; is nonzero only over elements e-1 and e.
Therefore integral calculations simplify as follows
Integral of eqn.i: I; = jf(qbi) dx = flop;)dx + f(o;) dx
Q. ne-1 e
Over the whole Over element e-1 Over element e
problem domain only only
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Node Based Integral Calculation of Chapter 2 (cont’d)

e For a5 node mesh

1 _____________________________________
i=1 =2 i=l3 i=4 =5~
 Allintegrals are
r N
I, = dx
! ngf(d)l) * Thisis node based thinking.
([
I, = Jr f(¢2) dx + J f(¢2) dx « We evaluate the integral of
le rQZ each equation, which are
I; = f(p3)dx + | f(p3)dx associated with one node
Jrﬂz Jrﬂg and one ¢.
lh = Jﬂ3f(¢4) dx + jﬂ4f(¢4) dx * In FEM codes we prefer
element based operations.
s = | f@o)dx
Q

J
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New Element Based Integral Calculation

Instead of thinking about each equation individually, concentrate on elements and
determine the contribution of each element to each equation.

e=1 contributes

A

1 T S
tol; and I,
4 ~N }
[ f(dy) dx e=2 contributes e=l e=2 e=3 e=4
Jor to I, and I3
r i ) .
J f(d,) dx|+| | f(p,) dx e=3 contributes
Ql Q2 tol; and I,
. Y, P N
f(¢3) dx Jr f(d3) dx e=4 contributes
02 Q3 to 14 and 15
\. ) r fr ~
f(dy) dx |+ || f(@y) dx
JQ3 JQ4
\. J
| @ ax
\. { Y,

METU — Dept. of Mechanical Engineering — ME 413 Int. to Finite Element Analysis — Lecture Notes of Dr. Sert 3-6



Elemental Thinking

For the following model DE

d du -I-bdu-l- = O0<x<L
dx adx dx cw=1, X

weak form is

jL dudw_l_b du+ ; _fL G 4 du du
) a— wo—towu jdx = OWf X Wade wa——

N N-

0

QL Qo
In Chapter 2 FE solution of this resulted ina NN X NN global system

[K{u} = {F}+ {0}
The new idea is to

write weak form over each element individually

e obtain elemental systems

 addthem up to get the global system
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Local Node Numbering and Elemental Weak Form

Consider the following linear element

Global node Local node
ﬂ numbers ﬂ numbers
i i+1 1 2
® € ® > X ® € o > X
Xi Xit+1 X1 x5

Elemental weak form of the model DE is

j@ dudw ,  du @
<aaa+ Wa-l-CWlL) X = Wf x+ ]‘ [

which will result in the following NN X NN elemental system

[K®[{u} = (F°} +1Q°}
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Elemental System

* Elemental systems are sparse.

[K°[{u} = {F°} +{Q°}

* Onamesh of 4 linear elements

. ®®

For e=1
® 71 (R ()
® 11® ®
\ - J \ - J

For e=3
-_(.\ (.\
® & [KQ}=<{®
Q@ & IR &
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®
X

k .

)

J

For e=2
. . r.\ r.\ (.\
® ® ® ® ®
® ® Rr=<1Rr+{ X
\ - J /) -
Fore=4
() (Y ()
. . .>=<.>+<.
X || ® ®
® KI\®) C Y
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Small Elemental Systems of Size NEN x NEN

Each elemental system contributes to only 2 egns of the global system.
It is better to think of elemental systems as NEN X NEN, instead of NN X NN
where NEN is the number of element’s nodes (=2 for linear elements)

[KH{u®} = {F°} +{Q°}

Elemental stiffness  Elemental unknown Elemental force Elemental boundary
matrix vector vector term vector
NEN X NEN NEN x 1 NEN x 1 NEN x 1

For example for e=3, small elemental system is

[l

Kiy K| fwi] _ [FP] | (@3 o (Y () ()
3 3 3( = V1e3( T ) A3 .. .. . : .
K51 Ko (U3 F; Q>

® & KX} =
R & 0%

Assembly - '/"\'J \ ) \ *J
operation
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From Approximation Functions to Shape Functions

bi  Div1

Node based
thinking —e

3
v
=

Element based
thinking

v
=

v
=

Shape functions
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Shape Functions

Similar to ¢’s, shape functions also have the
Kronecker-delta property

1if i=j
Sf(xfe)z{o if i #j

For a linear element shape functions are

Se _ xz - X Se _ x - x1
1 he ’ 2 he
FE solution over element e is
/\ Number of element’s
NEN nodes (=2 for linear
elements
j 2j
se J=1
2 Nodal unknown at
1 element e’s jt" node
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Shape Functions (cont’d)

* Difficulties with these shape functions are

* For each element they will be different
functions of x.

* Integration over an element will have
limits of x{ and x5 , which are not
appropriate for Gauss Quadrature
integration.

 The cure is to use the concept of master element.
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Master Element

e 1D, linear master element is defined using the local coordinate ¢ (ksi).

Superscript

“e” is NOT
/ necessary
1-— here
Sl — _6
2
1+¢
| 52 = 2
§=-1 §=1
* Forall linear elements in a 1D mesh, there is only a single master element.
* Master element has a length of 2.
* Endpointsare { = —1 and ¢ = 1, which are suitable for Gauss Quadrature.
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Mapping Between an Actual Element & Master Element

If a mesh has only linear elements, than we only need to define 2 shape functions.

This is a great simplification, but it comes with a price.

In order to express everything in the

integrals in terms of &, we need to obtain An actual element

e

the relation between the global x of length 1
coordinate and the local ¢ coordinate. . .

: . X1 X2
This relation is linear as shown * o > X

x =Af+ B Lox(§) =2 ™
Using the fact that end points of the actual » —e > &
element coincide with those of the master ¢=-1 ¢=1
element, we get Master element
of length 2
_ h_e n X{ + x5 | This relation is different for
X = 2 § 2 each and every element
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Jacobian of an Element

* |Inthe integrals of the weak form we have the first derivative of u.

NEN . NEN
du dS;
e e _ e ]
u—ZuJ-Sj - ——Zuj—
, dx , dx

J=1 J=1

* Master element shape functions are written in terms of .

* Therefore x derivatives should be expressed in terms of ¢ derivatives.

de de dé
dx d§ dx
ﬁ — _ , @ = 0.5 / \ = % (using the boxed
dg ds equation of the previous slide.
¢« J¢ = Z—; = h?e is the Jacobian of element e. It is the ratio of actual element’s length to

the length of the master element.
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Example 3.1

Example 3.1 Solve the following problem using a uniform mesh of 4 linear
elements of length h® = 0.25.

—— —u=—x?, 0<x<1

u(0) =0, u(l) =0

e Elemental weak form is
fxze du dw . sze 2 4y + du du
e \dx dx e A € MR e Wax e
1 1 X2 X1

* To get 2x2 elemental system of eqns, substitute the following approximate solution
into the elemental weak form
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Example 3.1 (cont’d)

In GFEM W1 =S]_ , Wo =SZ

ants [ |2( s
an = _Qe_dx ]
a2 [ (S uss
qn 2: Qe_dx u

In general the it"

d51
dx

dSz
dx

Sl 2 u]eSJ

SZ z u]eS]

dx

dx = J —S,x?dx +
Qe

-)-—WE eS‘dx = —WXx dx+[
Qe

Elemental system is 2x2 and we need 2 weight functions to get it.

eqn of element e is obtained by usingw = §;

J —Sx%dx +
Qe

Eqni: j il —SiZu-eS- dx = j —S;x% dx + Qf
Qe ] dX dx ] ] Qe l

du du
— W—
dx e dx| .
X2 X1
S du S du
o dx o dx
0 1x¢ 1 1x¢
0 Q¢
S du S du
< dx o dx
1 dx§ 0 dx¢
Q¢ 0
3-18
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Example 3.1 (cont’d)

* Change the integration parameter from x to ¢ (refer to slide 3-16)
dx = Jedé

ds; A/v/
Eqnii : j [( u dx) =S, (Z ufsjﬂ dx = J_ 1—Sixf\dx +Qf
\/ o it

a5 _ast =it
dx ~ déje
| 1 ds; 1ds; 1 colrens_ .
Egni: f_1[< u] d_f]_e>d_€]_e_52 S]] df S f(g)] df +Ql

* Take the summation sign outside the integral and take the integrand into uj
paranthesis.

. 1 /ds; 1 dS; 1 . . 1 , .
Eqni: ZL(df}e dﬂ—e—55>l dfuj—f_lSif(f)] ds + Q;
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Example 3.1 (cont’d)

. 1 /ds; 1 dS; 1 , . |t , .
Eqni: Z[jl<d_€]_e d_gj_e_SiSj)] df]uj = [Jlsif(f)] df]"‘ Qi

K Ff

l

Summation sign is over j = 1, 2.
[ index also goes from 1 to 2.
[ = 1 gives the first equation, i = 2 gives the second equation.

2x2 elemental system is [K¢]{u} = {F¢} + {Q¢}

We don’t need to do any calculations for Q values (Details will come).
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Example 3.1 (cont’d)

v
=

| —uv @

0.25

For each element h® = 0.25.
Jacobian for each elementis J¢ = h¢/2 = 0.125
All elements are linear. Shape functions and their derivatives are

1-¢ 14¢
51—T ) 2= "5
ds ds
——2=-05, —2=05
d¢ d¢

We need everything to evalute the entries of K¢ and F¢ one-by-one for each element.
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Example 3.1 (cont’d)

. [F[dS;1dS;1 .

_ \dE Je dE Je
Fore=1
L 7ds, 1 ds; 1 47
Klllzf_l(dff_e dff_e_slsl)]edfzﬁ
Kl—jl dS;1dS, 1 oo\ oo 97
12 — 4 d€ ]8 d€ ]8 122 ] f_ 24

K}, =K}, ([K¢] is symmetric. Interchange i & j and see)

1 (dS, 1 dS; 1 47
K212=f< - 2——5252>]ed€=—

g\ d¢ Jé dg Je 12

- 47

12
97

24
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Example 3.1 (cont’d)

No need to calculate [K?], [K3] or [K*].

They will all be equal to [K]. This is a special case for this problem. Can you see why?

Let’s start {F ¢} calculations.

1
Fe= | sipeeds

-1
\f(f) = —[x(&)]?

Fore=1:
o [re. xf+axg]t 0 (E+1Y
(e
1 1 1 3
F11=j_151f(€)]ed€=—7—68 , F%=J_152f<f>fedf:‘7_68
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Example 3.1 (cont’d)

* Fore=2: f=-— (E+3)2

1 11 1 17
F2 = j_151 f@JodE =7~ £ = LSZ JOJds = 7

e Fore=3: f =7 (fmd yourSEIf)

1 33 1 43
F? = j_lsl fOJdE=—-~ , = LSZ f(§)J78 = =78

° For e:4 . f :? (flnd yourself)

Ff—j S f)JedE =~ Fz“—J S2J@) S =~ 74
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Example 3.1 (cont’d)

Four elemental systems are

Fore=1:

Fore=2:

Fore=3:

Fore=4:

—97

—97

i[94
24 1-97

u;

}=
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{

67
81

}+4

4
1

Q2

}
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Assemble elemental systems into 5x5 global system (see slide 3-9).

Kiv  Kiy
K31 Kap + Kfy
0 K%
0 0
0 0

Example 3.1 (cont’d)

>+ 1< 05 + 03
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Put the numbers in to get

94 —97
11-97 94494
— ~97

—97
94 + 94
—97

Example 3.1 (cont’d)

Balance of secondary variables :

(U1
Uy 1
—97 U3 p = ———4
94 +94 —97||us 768
—97 94 1 \us)
1L 02 = du N du _ 0
QZ Ql - dx ) dx , -
X5 x1
Q5 + Q3 = du + _du) 0
2 Vo \dx ), dx) .
x5 x3
Q5 +Qf = i B R
2 1 \dx ) dx) .,
x5 X

K

~N"
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Example 3.1 (cont’d)

Global system is

194 —97 1 (%) (1) (@D
11-97 188 —97 U, 1 | 14 0
>4 —97 188 —97 <u3>=—%< 50 p+< 0 ;

—97 188 —97||us 110 0
—97 94 1 \us) .81/ \QJ

U4 and ug are known.

Reduce the system by dropping the 1t and 5% equations.

1 (188 —97 Uz 1 (14 0
> |—97 188 =97 U3¢ = 50 ¢ +30

24 —97 1881\U4 768 0

110
us —0.0232
Uz =1—0.0405
Uy —0.0392
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Apply EBCs without Reduction

* Reduction is not easy to implement in a computer code.
* Asimpler technique is to keep the 1%t and 5t eqns, but modify them as follows

1 0 0 0 017w Uy @
K1 Kzz Kz Kzq Kos||W2 0 0
K31 K32 K33 K34 K35 < Uz } = < 0 + < 0,
Kaw Ky Kyz Kys Kys| [U4 0 0
/ 0 0 o0 o0 1 s | @‘\
Equate diagonal entries to 1, The.sg are the Equate
and non-diagonal entries to zero specified values unknown
of u; and us Q’s to zero.

* Disadvantages are
* symmetry of [K] is lost.

* an unnecessarily large system is solved.
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Apply EBCs without Reduction (cont’d)

* Athird alternative for EBCs modifies 1%t and 5t eqns as follows

L XKy1| Kip Kiz Kia Kis 7 (un (L X K11 XU) ) ([0
K>q Ky, Kpz Ky K;s us F, 0
K31 K3y K3z Kzy Kss |{Usp =+ F; »+10 ¢
K44 Kip Kuz Kay Kys Uy F, 0
K=z Kso Ks3 Ksu |L X Kecg|l \Us) \L X Kge X Us) 0/

where L is large enough number.

* |If Lislarge enough the 15t and 5% eqns simplify to
LK quq, + Negligibly small terms = LK, U; - u; =U;
LKzcus + Negligibly small terms = LKssUs —  ug = Ug

e This technique preserves possible symmetry of [K].

METU — Dept. of Mechanical Engineering — ME 413 Int. to Finite Element Analysis — Lecture Notes of Dr. Sert

3-30



NBCs

If a NBC is provided, the specified Q value is used in the global system.
Similar to the Ritz method, NBCs are satisfied not exactly, but approximately.

Be careful in determining the SV correctly.

If a heat conduction problem is formulated starting from

d kAdT + =0
dx dx ------ —

then Qi =—(kASL) and Quy = (kAS)

>~ SV is heat in Watts

If in the same problem kA is constant and dropped from the DE

~

d (T,  _,
dx\dx/) B | SVis temperature

a7 . gradient in K/m

then Q; = — (E)o and Quyny = (E)L
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MBCs

Put the given mixed BC into the form

SV =aPV+p
where a and [ are known values.

Use aPV + [ in the proper place of the {Q} vector.

Transfer aPV to the [K] matrix and leave [ on the RHS of the global system.

If a mixed BC is given at the 5% (last) node of a 4 element mesh

g g

K11 Kiz Kiz Kia Kis7 (U (F1Y
K1 Ky Kiz Kyy Kps| Uz F,
K31 Ksz; Kzz K3y Kzs|{Usp =1F;3
Kiw Kip Kiz Kiy Kys||Ua F,
Keqy Ksp Ksg3 Koy Kool \Us) \Fc )

MOdlfy K55 as
K55 —a
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Gauss Quadrature (GQ) Integration

* |In FEM integrals similar to the following ones need to be evaluated

. [t [dSi1dS;1 , e (' ,
Kij—j_l(dfje iz Je SiSj>] a F; —jlsif(f)] dé

* The limits [-1,1] are suitable for GQ integration, which converts an integral into a

summation
( Number of GQ points

NGP

1
= 9(6) dg = ;g(mwk

\— GQ weights
Coordinates

of GQ points
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GQ Integration (cont’d)

GQ points and weights for different NGP values are

NGP & w,
1 0.0 2.0
, —1/+/3 = —0.577350269189626 1.0
1/+/3 = 0.577350269189626 1.0
—/0.6 = —0.774596669241483 5/9 = 0.555555555555555
3 0.0 8/9 = 0.888888888888889
V0.6 =0.774596669241483 5/9 =0.555555555555555
— 0.861136311594953 0.347854845137454
A — 0.339981043584856 0.652145154862546
0.339981043584856 0.652145154862546
0.861136311594953 0.347854845137454

NGP point GQ integration can evaluate (2 NGP — 1) order polynomial functions

exactly.
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Example 3.2

Example 3.2 Evaluate K, and F{ of Example 3.1 using GQ integration.

- _j ds; 1.dsi1 Jede
11__ dé’]ed{‘_’]e 1v1

0.5 0.5) — VN2 0129y
[( )0125( ')0.125_( 2 )( 2 )]( ) &

(M (& +28+63
[ )«

- -

g(é)

e Using 1pointGQ: Ki; =2g(0) =3.9375
+ Using2point GQ: Ky = g(—=) +g(5) = 3.9167

>Ing < poin - M= I\THE)TIGE) T Both are
« Using3pointGQ: Kij = gg(—v0.6) + gg(O) + %g(v0.6) = 39167 | ©xact
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Example 3.2 (cont’d)

1
A= 51 1@ Jedg
Y el €+120125d
-[-(5°)(57) cnse

B 1 €3+€2_€_1
_L( 1024 >Jd€

g(é)

Using 1 point GQ: F{ = 2g(0) = —0.0019531

Using 2 point GQ: F{ =g (— \/—15) +g (\/—15) = —0.0013021

Using 3 point GQ : Ff =2 g(—V0.6) +g(0) +2 g(+/0.6) = —0.0013021

Both are
exact
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