Middle East Technical University
 Department of Mechanical Engineering
 ME 413 Introduction to Finite Element Analysis

Chapter 3

Computer Implementation of 1D FEM

These notes are prepared by
Dr. Cüneyt Sert
http://www.me.metu.edu.tr/people/cuneyt
csert@metu.edu.tr

Summary of Chapter 2

- In Chapter 2 Ritz method was improved into FEM.
- Solution is not global anymore.
- Solution over each element is simple. Complicated 2D and 3D solutions on complex domains can be obtained, by using necessary number of elements.
- Problems with multiple materials can be solved.
- Approximation function selection is very well defined and independent of BCs.
- But the procedure of Chapter 2 still have difficulties.
- Writing approximation functions one-by-one for each node is difficult. In 2D and 3D it'll be even more difficult.
- Approximation functions change when mesh changes.
- Symbolic math is limited and costly.

Exercise : Modify Example2_1v2.m code so that it asks the user to enter $N E$ and works automatically. Using tic \& toc commands, measure computation time for $N E=5,10,50,100,1000$. Improve the speed of the code in any way you can.

What Is This Chapter About?

- We'll improve the solution procedure of Chapter 2 so that
- it is almost completely mesh independent
- approximation function calculations are easy
- symbolic calculations are avoided
- solution is efficient and very algorithmic
- To achieve these we'll use
- Elemental weak form
- Master element concept
- Gauss Quadrature numerical integration

Node Based Integral Calculation of Chapter 2

- In FEM ϕ 's have local support.
- For linear elements, ϕ 's are nonzero over at most two elements.

- Integral of the $i^{\text {th }}$ eqn. contains ϕ_{i} in all its terms (see slide 2-12).
- But ϕ_{i} is nonzero only over elements e-1 and e.
- Therefore integral calculations simplify as follows

Node Based Integral Calculation of Chapter 2 (cont'd)

- For a 5 node mesh

- All integrals are

$$
\begin{aligned}
& I_{1}=\int_{\Omega^{1}} f\left(\phi_{1}\right) d x \\
& I_{2}=\int_{\Omega^{1}} f\left(\phi_{2}\right) d x+\int_{\Omega^{2}} f\left(\phi_{2}\right) d x \\
& I_{3}=\int_{\Omega^{2}} f\left(\phi_{3}\right) d x+\int_{\Omega^{3}} f\left(\phi_{3}\right) d x \\
& I_{4}=\int_{\Omega^{3}} f\left(\phi_{4}\right) d x+\int_{\Omega^{4}} f\left(\phi_{4}\right) d x \\
& I_{5}=\int_{\Omega^{4}} f\left(\phi_{5}\right) d x
\end{aligned}
$$

- This is node based thinking.
- We evaluate the integral of each equation, which are associated with one node and one ϕ.
- In FEM codes we prefer element based operations.

New Element Based Integral Calculation

- Instead of thinking about each equation individually, concentrate on elements and determine the contribution of each element to each equation.

Elemental Thinking

- For the following model DE

$$
-\frac{d}{d x}\left(a \frac{d u}{d x}\right)+b \frac{d u}{d x}+c u=f, \quad 0<x<L
$$

weak form is

$$
\int_{0}^{L}\left(a \frac{d u}{d x} \frac{d w}{d x}+b w \frac{d u}{d x}+c w u\right) d x=\int_{0}^{L} w f d x+\underbrace{\left[w a \frac{d u}{d x}\right]_{L}}_{Q_{L}}-\underbrace{-\left[w a \frac{d u}{d x}\right]_{0}}_{Q_{0}}
$$

- In Chapter 2 FE solution of this resulted in a $N N \times N N$ global system

$$
[K]\{u\}=\{F\}+\{Q\}
$$

- The new idea is to
- write weak form over each element individually
- obtain elemental systems
- add them up to get the global system

Local Node Numbering and Elemental Weak Form

- Consider the following linear element

- Elemental weak form of the model DE is

$$
\int_{\left(x_{1}^{2}\right)}^{x_{2}^{2}}\left(a \frac{d u}{d x} \frac{d w}{d x}+b w \frac{d u}{d x}+c w u\right) d x=\int_{x_{1}^{2}}^{x_{2}^{2}} w f d x+\left[w \frac{d u}{d x}\right]_{\left(x_{2}^{2}\right)}-\left[w \frac{d u}{d x}\right]_{\left(x_{1}^{(2)}\right.}
$$

which will result in the following $N N \times N N$ elemental system

$$
\left[K^{e}\right]\{u\}=\left\{F^{e}\right\}+\left\{Q^{e}\right\}
$$

Elemental System

$$
\left[K^{e}\right]\{u\}=\left\{F^{e}\right\}+\left\{Q^{e}\right\}
$$

- Elemental systems are sparse.
- On a mesh of 4 linear elements

$$
\begin{aligned}
& \text { For } \mathrm{e}=1 \\
& \text { For } \mathrm{e}=2 \\
& {\left[\begin{array}{lllll}
\otimes & \otimes & \cdot & \cdot & \cdot \\
\otimes & \otimes & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & .
\end{array}\right]\left\{\begin{array}{l}
\otimes \\
\otimes \\
\cdot \\
\cdot
\end{array}\right\}=\left\{\begin{array}{l}
\otimes \\
\otimes \\
\cdot \\
\cdot \\
\cdot
\end{array}\right\}+\left\{\begin{array}{l}
\otimes \\
\otimes \\
\cdot \\
\cdot \\
\cdot
\end{array}\right\}} \\
& \text { For e=3 } \\
& {\left[\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \otimes & \cdot & \cdot \\
\cdot & \otimes & \otimes & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]\left\{\begin{array}{l}
\dot{\otimes} \\
\otimes \\
\cdot
\end{array}\right\}=\left\{\begin{array}{c}
\dot{\otimes} \\
\otimes \\
\cdot \\
\cdot
\end{array}\right\}+\left\{\begin{array}{c}
\cdot \\
\otimes \\
\otimes \\
\cdot \\
\cdot
\end{array}\right\}} \\
& \text { For } \mathrm{e}=4 \\
& {\left[\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \otimes & \otimes & \cdot \\
\cdot & \cdot & \otimes & \cdot
\end{array}\right]\left\{\begin{array}{l}
\cdot \\
\otimes \\
\otimes
\end{array}\right\}=\left\{\begin{array}{l}
\cdot \\
\cdot \\
\otimes \\
\otimes \\
\cdot
\end{array}\right\}+\left\{\begin{array}{l}
\cdot \\
\cdot \\
\otimes \\
\otimes \\
\cdot
\end{array}\right\}} \\
& {\left[\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \otimes & \otimes \\
\cdot & \cdot & \cdot & \otimes & \otimes
\end{array}\right]\left\{\begin{array}{l}
\cdot \\
\cdot \\
\otimes \\
\otimes
\end{array}\right\}=\left\{\begin{array}{l}
\cdot \\
\cdot \\
\otimes \\
\otimes
\end{array}\right\}+\left\{\begin{array}{l}
\cdot \\
\cdot \\
\otimes \\
\otimes
\end{array}\right\}}
\end{aligned}
$$

Small Elemental Systems of Size NEN x NEN

- Each elemental system contributes to only 2 eqns of the global system.
- It is better to think of elemental systems as $N E N \times N E N$, instead of $N N \times N N$ where $N E N$ is the number of element's nodes (=2 for linear elements)

- For example for $\mathrm{e}=3$, small elemental system is

From Approximation Functions to Shape Functions

Node based thinking

Element based thinking

Shape functions

Shape Functions

- Similar to ϕ^{\prime} 's, shape functions also have the Kronecker-delta property

$$
S_{i}^{e}\left(x_{j}^{e}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

- For a linear element shape functions are

$$
S_{1}^{e}=\frac{x_{2}^{e}-x}{h^{e}}, \quad S_{2}^{e}=\frac{x-x_{1}^{e}}{h^{e}}
$$

- FE solution over element e is

$$
u^{e}=\sum_{j=1}^{N E N} u_{j}^{e} S_{j}^{e} \begin{aligned}
& \text { Number of element's } \\
& \text { nodes (=2 for linear } \\
& \text { elements) } \\
& \text { element e's } j^{t h} \text { node }
\end{aligned}
$$

Shape Functions (cont'd)

- Difficulties with these shape functions are
- For each element they will be different functions of x.
- Integration over an element will have limits of x_{1}^{e} and x_{2}^{e}, which are not
 appropriate for Gauss Quadrature integration.
- The cure is to use the concept of master element.

Master Element

- 1D, linear master element is defined using the local coordinate $\xi(\mathrm{ksi})$.

Superscript

$$
\xi=-1 \quad \xi=1
$$

$$
S_{2}=\frac{1+\xi}{2}
$$

- For all linear elements in a 1D mesh, there is only a single master element.
- Master element has a length of 2.
- End points are $\xi=-1$ and $\xi=1$, which are suitable for Gauss Quadrature.

Mapping Between an Actual Element \& Master Element

- If a mesh has only linear elements, than we only need to define 2 shape functions.
- This is a great simplification, but it comes with a price.
- In order to express everything in the integrals in terms of ξ, we need to obtain the relation between the global x coordinate and the local ξ coordinate.
- This relation is linear as shown

$$
x=A \xi+B
$$

- Using the fact that end points of the actual element coincide with those of the master element, we get

$$
x=\frac{h^{e}}{2} \xi+\frac{x_{1}^{e}+x_{2}^{e}}{2}
$$

Jacobian of an Element

- In the integrals of the weak form we have the first derivative of u.

$$
u^{e}=\sum_{j=1}^{N E N} u_{j}^{e} S_{j} \quad \rightarrow \quad \frac{d u^{e}}{d x}=\sum_{j=1}^{N E N} u_{j}^{e} \frac{d S_{j}}{d x}
$$

- Master element shape functions are written in terms of ξ.
- Therefore x derivatives should be expressed in terms of ξ derivatives.

$$
\frac{d S_{j}}{d x}=\frac{d S_{j}}{d \xi} \frac{d \xi}{d x}
$$

- $J^{e}=\frac{d x}{d \xi}=\frac{h^{e}}{2}$ is the Jacobian of element e. It is the ratio of actual element's length to the length of the master element.

Example 3.1

e.g.

Example 3.1 Solve the following problem using a uniform mesh of 4 linear elements of length $h^{e}=0.25$.

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}}-u & =-x^{2}, \quad 0<x<1 \\
u(0) & =0, \quad u(1)=0
\end{aligned}
$$

- Elemental weak form is

$$
\int_{x_{1}^{e}}^{x_{2}^{e}}\left(\frac{d u}{d x} \frac{d w}{d x}-w u\right) d x=\int_{x_{1}^{e}}^{x_{2}^{e}}-w x^{2} d x+\left[w \frac{d u}{d x}\right]_{x_{2}^{e}}-\left[w \frac{d u}{d x}\right]_{x_{1}^{e}}
$$

- To get 2×2 elemental system of eqns, substitute the following approximate solution into the elemental weak form

$$
u=\sum_{j=1}^{N E N} u_{j}^{e} S_{j}
$$

Example 3.1 (cont'd)

$$
\int_{\Omega^{e}}\left[\frac{d}{d x}\left(\sum u_{j}^{e} S_{j}\right) \frac{d w}{d x}-w \sum u_{j}^{e} S_{j}\right] d x=\int_{\Omega^{e}}-w x^{2} d x+\left[w \frac{d u}{d x}\right]_{x_{2}^{e}}-\left[w \frac{d u}{d x}\right]_{x_{1}^{e}}
$$

- Elemental system is 2×2 and we need 2 weight functions to get it.
- In GFEM $w_{1}=S_{1}, w_{2}=S_{2}$

Eqn 1: $\int_{\Omega^{e}}\left[\frac{d}{d x}\left(\sum u_{j}^{e} S_{j}\right) \frac{d S_{1}}{d x}-S_{1} \sum u_{j}^{e} S_{j}\right] d x=\int_{\Omega^{e}}-S_{1} x^{2} d x+\underbrace{\left[\begin{array}{c}S_{1} \frac{d u}{d x} \\ \underbrace{d x}_{0}\end{array}\right]_{x_{2}^{e}}}_{0}-\underbrace{\left[\begin{array}{c}S_{1} \\ S_{1} \frac{d u}{d x} \\ 1\end{array}\right]_{x_{1}^{e}}}_{Q_{1}^{e}}$
Eqn 2: $\int_{\Omega^{e}}\left[\frac{d}{d x}\left(\sum u_{j}^{e} S_{j}\right) \frac{d S_{2}}{d x}-S_{2} \sum u_{j}^{e} S_{j}\right] d x=\int_{\Omega^{e}}-S_{2} x^{2} d x+\underbrace{\left[S_{2} \frac{d u}{d x}\right]_{x_{2}^{e}}}_{Q_{2}^{e}} \underbrace{\left[\int_{1}^{S_{1} \frac{d u}{d x}} \frac{d u}{d x}\right]_{x_{1}^{e}}}_{0}$

- In general the $i^{\text {th }}$ eqn of element e is obtained by using $w=S_{i}$

$$
\text { Eqn i : } \quad \int_{\Omega^{e}}\left[\left(\sum u_{j}^{e} \frac{d S_{j}}{d x}\right) \frac{d S_{i}}{d x}-S_{i} \sum u_{j}^{e} S_{j}\right] d x=\int_{\Omega^{e}}-S_{i} x^{2} d x+Q_{i}^{e}
$$

Example 3.1 (cont'd)

- Change the integration parameter from x to ξ (refer to slide 3-16)

Eqn i : $\quad \int_{-1}^{1}\left[\left(\sum u_{j}^{e} \frac{d S_{j}}{d \xi} \frac{1}{J^{e}}\right) \frac{d S_{i}}{d \xi} \frac{1}{J^{e}}-S_{i} \sum u_{j}^{e} S_{j}\right] J^{e} d \xi=\int_{-1}^{1} S_{i} f(\xi) J^{e} d \xi+Q_{i}^{e}$

- Take the summation sign outside the integral and take the integrand into u_{j}^{e} paranthesis.

Eqn i :

$$
\sum \int_{-1}^{1}\left(\frac{d S_{i}}{d \xi} \frac{1}{J^{e}} \frac{d S_{j}}{d \xi} \frac{1}{J^{e}}-S_{i} S_{j}\right) J^{e} d \xi u_{j}^{e}=\int_{-1}^{1} S_{i} f(\xi) J^{e} d \xi+Q_{i}^{e}
$$

Example 3.1 (cont'd)

Eqn i: $\quad \sum \frac{\int_{-1}^{1}\left(\frac{d S_{i}}{d \xi} \frac{1}{J^{e}} \frac{d S_{j}}{d \xi} \frac{1}{J^{e}}-S_{i} S_{j}\right) J^{e} d \xi}{K_{i j}^{e}} u_{j}^{e}=\frac{\int_{-1}^{1} S_{i} f(\xi) J^{e} d \xi}{F_{i}^{e}}+Q_{i}^{e}$

- Summation sign is over $j=1,2$.
- $\quad i$ index also goes from 1 to 2 .
- $i=1$ gives the first equation, $i=2$ gives the second equation.
- 2×2 elemental system is $\left[K^{e}\right]\{u\}=\left\{F^{e}\right\}+\left\{Q^{e}\right\}$
- We don't need to do any calculations for Q_{i}^{e} values (Details will come).

Example 3.1 (cont'd)

- For each element $h^{e}=0.25$.
- Jacobian for each element is $J^{e}=h^{e} / 2=0.125$
- All elements are linear. Shape functions and their derivatives are

$$
\begin{array}{ll}
S_{1}=\frac{1-\xi}{2}, & S_{2}=\frac{1+\xi}{2} \\
\frac{d S_{1}}{d \xi}=-0.5, & \frac{d S_{2}}{d \xi}=0.5
\end{array}
$$

- We need everything to evalute the entries of K^{e} and F^{e} one-by-one for each element.

Example 3.1 (cont'd)

$$
K_{i j}^{e}=\int_{-1}^{1}\left(\frac{d S_{i}}{d \xi} \frac{1}{J^{e}} \frac{d S_{j}}{d \xi} \frac{1}{J^{e}}-S_{i} S_{j}\right) J^{e} d \xi
$$

- For $\mathrm{e}=1$

$$
\left.\begin{array}{l}
K_{11}^{1}=\int_{-1}^{1}\left(\frac{d S_{1}}{d \xi} \frac{1}{J^{e}} \frac{d S_{1}}{d \xi} \frac{1}{J^{e}}-S_{1} S_{1}\right) J^{e} d \xi=\frac{47}{12} \\
K_{12}^{1}=\int_{-1}^{1}\left(\frac{d S_{1}}{d \xi} \frac{1}{J^{e}} \frac{d S_{2}}{d \xi} \frac{1}{J^{e}}-S_{1} S_{2}\right) J^{e} d \xi=-\frac{97}{24} \\
K_{21}^{1}=K_{12}^{1} \quad\left(\left[K^{e}\right] \text { is symmetric. Interchange } i \& j \text { and see }\right) \\
K_{22}^{1}=\int_{-1}^{1}\left(\frac{d S_{2}}{d \xi} \frac{1}{J^{e}} \frac{d S_{2}}{d \xi} \frac{1}{J^{e}}-S_{2} S_{2}\right) J^{e} d \xi=\frac{47}{12}
\end{array}\right\} K^{1}=\left[\begin{array}{cc}
\frac{47}{12} & -\frac{97}{24} \\
-\frac{97}{24} & \frac{47}{12}
\end{array}\right]
$$

Example 3.1 (cont'd)

- No need to calculate $\left[K^{2}\right],\left[K^{3}\right]$ or $\left[K^{4}\right]$.
- They will all be equal to [K^{1}]. This is a special case for this problem. Can you see why?
- Let's start $\left\{F^{e}\right\}$ calculations.

$$
F_{i}^{e}=\int_{-1}^{1} S_{i} f(\xi) J^{e} d \xi
$$

- For $\mathrm{e}=1$:

$$
\begin{gathered}
f=-\left[\frac{h^{e}}{2} \xi+\frac{x_{1}^{e}+x_{2}^{e}}{2}\right]^{2}=-\left(\frac{\xi+1}{8}\right)^{2} \\
F_{1}^{1}=\int_{-1}^{1} S_{1} f(\xi) J^{e} d \xi=-\frac{1}{768}, \quad F_{2}^{1}=\int_{-1}^{1} S_{2} f(\xi) J^{e} d \xi=-\frac{3}{768}
\end{gathered}
$$

Example 3.1 (cont'd)

- For $\mathrm{e}=2: f=-\left(\frac{\xi+3}{8}\right)^{2}$

$$
F_{1}^{2}=\int_{-1}^{1} S_{1} f(\xi) J^{e} d \xi=-\frac{11}{768}, \quad F_{2}^{2}=\int_{-1}^{1} S_{2} f(\xi) J^{e} d \xi=-\frac{17}{768}
$$

- For e=3: $f=$? (find yourself)

$$
F_{1}^{3}=\int_{-1}^{1} S_{1} f(\xi) J^{e} d \xi=-\frac{33}{768} \quad, \quad F_{2}^{3}=\int_{-1}^{1} S_{2} f(\xi) J^{e} d \xi=-\frac{43}{768}
$$

- For $\mathrm{e}=4$: $f=$? (find yourself)

$$
F_{1}^{4}=\int_{-1}^{1} S_{1} f(\xi) J^{e} d \xi=-\frac{67}{768} \quad, \quad F_{2}^{4}=\int_{-1}^{1} S_{2} f(\xi) J^{e} d \xi=-\frac{81}{768}
$$

Example 3.1 (cont'd)

- Four elemental systems are

For $\mathrm{e}=1: \quad \frac{1}{24}\left[\begin{array}{cc}94 & -97 \\ -97 & 94\end{array}\right]\left\{\begin{array}{l}u_{1}^{1} \\ u_{2}^{1}\end{array}\right\}=-\frac{1}{768}\left\{\begin{array}{l}1 \\ 3\end{array}\right\}+\left\{\begin{array}{l}Q_{1}^{1} \\ Q_{2}^{1}\end{array}\right\}$

For e=2: $\quad \frac{1}{24}\left[\begin{array}{cc}94 & -97 \\ -97 & 94\end{array}\right]\left\{\begin{array}{l}u_{1}^{2} \\ u_{2}^{2}\end{array}\right\}=-\frac{1}{768}\left\{\begin{array}{l}11 \\ 17\end{array}\right\}+\left\{\begin{array}{l}Q_{1}^{2} \\ Q_{2}^{2}\end{array}\right\}$
For $\mathrm{e}=3: \quad \frac{1}{24}\left[\begin{array}{cc}94 & -97 \\ -97 & 94\end{array}\right]\left\{\begin{array}{l}u_{1}^{3} \\ u_{2}^{3}\end{array}\right\}=-\frac{1}{768}\left\{\begin{array}{l}33 \\ 43\end{array}\right\}+\left\{\begin{array}{l}Q_{1}^{3} \\ Q_{2}^{3}\end{array}\right\}$
For $\mathrm{e}=4: \quad \frac{1}{24}\left[\begin{array}{cc}94 & -97 \\ -97 & 94\end{array}\right]\left\{\begin{array}{l}u_{1}^{4} \\ u_{2}^{4}\end{array}\right\}=-\frac{1}{768}\left\{\begin{array}{l}67 \\ 81\end{array}\right\}+\left\{\begin{array}{l}Q_{1}^{4} \\ Q_{2}^{4}\end{array}\right\}$

Example 3.1 (cont'd)

- Assemble elemental systems into $5 x 5$ global system (see slide 3-9).

$\left[\begin{array}{ccccc}K_{11}^{1} & K_{12}^{1} & 0 & 0 & 0 \\ K_{21}^{1} & K_{22}^{1}+K_{11}^{2} & K_{12}^{2} & 0 & 0 \\ 0 & K_{21}^{2} & K_{22}^{2}+K_{11}^{3} & K_{12}^{3} & 0 \\ 0 & 0 & K_{21}^{3} & K_{22}^{3}+K_{11}^{4} & K_{12}^{4} \\ 0 & 0 & 0 & K_{21}^{4} & K_{22}^{4}\end{array}\right]\left\{\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5}\end{array}\right\}=\left\{\begin{array}{c}F_{1}^{1} \\ F_{2}^{1}+F_{1}^{2} \\ F_{2}^{2}+F_{1}^{3} \\ F_{2}^{3}+F_{1}^{4} \\ F_{2}^{4}\end{array}\right\}+\left\{\begin{array}{c}Q_{1}^{1} \\ Q_{2}^{1}+Q_{1}^{2} \\ Q_{2}^{2}+Q_{1}^{3} \\ Q_{2}^{3}+Q_{1}^{4} \\ Q_{2}^{4}\end{array}\right\}$

Example 3.1 (cont'd)

- Put the numbers in to get

$$
\frac{1}{24}\left[\begin{array}{ccccc}
94 & -97 & & & \\
-97 & 94+94 & -97 & -97 & \\
& -97 & 94+94 & -97 \\
& & -97 & 94+94 & -97 \\
-97 & 94
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right\}=-\frac{1}{768}\left\{\begin{array}{c}
1 \\
3+11 \\
17+33 \\
43+67 \\
81
\end{array}\right\}+\left(\begin{array}{c}
Q_{1}^{1} \\
Q_{2}^{1}+Q_{1}^{2} \\
Q_{2}^{2}+Q_{1}^{3} \\
Q_{2}^{3}+Q_{1}^{4} \\
Q_{2}^{4}
\end{array}\right\}
$$

- Balance of secondary variables :

$$
\begin{aligned}
& Q_{2}^{1}+Q_{1}^{2}=\left(\frac{d u}{d x}\right)_{x_{2}^{1}}+\left(-\frac{d u}{d x}\right)_{x_{1}^{2}}=0 \\
& Q_{2}^{2}+Q_{1}^{3}=\left(\frac{d u}{d x}\right)_{x_{2}^{2}}+\left(-\frac{d u}{d x}\right)_{x_{1}^{3}}=0 \\
& Q_{2}^{3}+Q_{1}^{4}=\left(\frac{d u}{d x}\right)_{x_{2}^{3}}+\left(-\frac{d u}{d x}\right)_{x_{1}^{4}}=0
\end{aligned}
$$

Example 3.1 (cont'd)

- Global system is

$$
\frac{1}{24}\left[\begin{array}{ccccc}
94 & -97 & & & \\
-97 & 188 & -97 & & \\
& -97 & 188 & -97 & \\
& & -97 & 188 & -97 \\
& & & -97 & 94
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right\}=-\frac{1}{768}\left\{\begin{array}{c}
1 \\
14 \\
50 \\
110 \\
81
\end{array}\right\}+\left\{\begin{array}{c}
Q_{1} \\
0 \\
0 \\
0 \\
Q_{5}
\end{array}\right\}
$$

- u_{1} and u_{5} are known.
- Reduce the system by dropping the $1^{\text {st }}$ and $5^{\text {th }}$ equations.

$$
\frac{1}{24}\left[\begin{array}{ccc}
188 & -97 & \\
-97 & 188 & -97 \\
& -97 & 188
\end{array}\right]\left[\begin{array}{l}
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right\}=-\frac{1}{768}\left\{\begin{array}{c}
14 \\
50 \\
110
\end{array}\right\}+\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

- FE solution is

$$
\left\{\begin{array}{l}
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right\}=\left\{\begin{array}{l}
-0.0232 \\
-0.0405 \\
-0.0392
\end{array}\right\}
$$

Apply EBCs without Reduction

- Reduction is not easy to implement in a computer code.
- A simpler technique is to keep the $1^{\text {st }}$ and $5^{\text {th }}$ eqns, but modify them as follows

- Disadvantages are
- symmetry of [K] is lost.
- an unnecessarily large system is solved.

Apply EBCs without Reduction (cont'd)

- A third alternative for EBCs modifies $1^{\text {st }}$ and $5^{\text {th }}$ eqns as follows

$$
\left.\begin{array}{|ccccc}
\hline L \times K_{11} & K_{12} & K_{13} & K_{14} & K_{15} \\
\hline K_{21} & K_{22} & K_{23} & K_{24} & K_{25} \\
K_{31} & K_{32} & K_{33} & K_{34} & K_{35} \\
K_{41} & K_{42} & K_{43} & K_{44} & K_{45} \\
K_{51} & K_{52} & K_{53} & K_{54} & L \times K_{55}
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right\}=\left\{\begin{array}{c}
L \times K_{11} \times U_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\hline L \times K_{55} \times U_{5}
\end{array}\right\}+\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

where L is large enough number.

- If L is large enough the $1^{\text {st }}$ and $5^{\text {th }}$ eqns simplify to

$$
\begin{array}{lll}
L K_{11} u_{1}+\text { Negligibly small terms }=L K_{11} U_{1} & \rightarrow & u_{1}=U_{1} \\
L K_{55} u_{5}+\text { Negligibly small terms }=L K_{55} U_{5} & \rightarrow & u_{5}=U_{5}
\end{array}
$$

- This technique preserves possible symmetry of $[K]$.

NBCs

- If a NBC is provided, the specified Q value is used in the global system.
- Similar to the Ritz method, NBCs are satisfied not exactly, but approximately.
- Be careful in determining the SV correctly.
- If a heat conduction problem is formulated starting from
$\left.\begin{array}{l}\qquad-\frac{d}{d x}\left(k A \frac{d T}{d x}\right)+\ldots \ldots=0 \\ \text { then } Q_{1}=-\left(k A \frac{d T}{d x}\right)_{0} \quad \text { and } \quad Q_{N N}=\left(k A \frac{d T}{d x}\right)_{L}\end{array}\right\} \mathrm{SV}$ is heat in Watts
- If in the same problem $k A$ is constant and dropped from the DE

$$
-\frac{d}{d x}\left(\frac{d T}{d x}\right)+\ldots \ldots=0
$$

then

$$
Q_{1}=-\left(\frac{d T}{d x}\right)_{0} \quad \text { and } \quad Q_{N N}=\left(\frac{d T}{d x}\right)_{L}
$$

SV is temperature gradient in K/m

MBCs

- Put the given mixed BC into the form

$$
S V=\alpha P V+\beta
$$

where α and β are known values.

- Use $\alpha P V+\beta$ in the proper place of the $\{Q\}$ vector.
- Transfer $\alpha P V$ to the [K] matrix and leave β on the RHS of the global system.
- If a mixed BC is given at the $5^{\text {th }}$ (last) node of a 4 element mesh

$$
\begin{gathered}
{\left[\begin{array}{lllll}
K_{11} & K_{12} & K_{13} & K_{14} & K_{15} \\
K_{21} & K_{22} & K_{23} & K_{24} & K_{25} \\
K_{31} & K_{32} & K_{33} & K_{34} & K_{35} \\
K_{41} & K_{42} & K_{43} & K_{44} & K_{45} \\
K_{51} & K_{52} & K_{53} & K_{54} & K_{55}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right\}=\left\{\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
F_{5}
\end{array}\right\}+\left\{\begin{array}{c}
Q_{1} \\
0 \\
0 \\
0 \\
\alpha u_{5}+\beta
\end{array}\right\}} \\
\text { Modify } K_{55} \text { as } \\
K_{55}-\alpha
\end{gathered}
$$

Gauss Quadrature (GQ) Integration

- In FEM integrals similar to the following ones need to be evaluated

$$
K_{i j}^{e}=\int_{-1}^{1}\left(\frac{d S_{i}}{d \xi} \frac{1}{J^{e}} \frac{d S_{j}}{d \xi} \frac{1}{J^{e}}-S_{i} S_{j}\right) J^{e} d \xi \quad, \quad F_{i}^{e}=\int_{-1}^{1} S_{i} f(\xi) J^{e} d \xi
$$

- The limits $[-1,1]$ are suitable for $G Q$ integration, which converts an integral into a summation

$$
I=\int_{-1}^{1} g(\xi) d \xi=\sum_{k=1}^{N G P} g\left(\xi_{k}\right) W_{k}
$$

GQ Integration (cont'd)

- GQ points and weights for different $N G P$ values are

NGP	ξ_{k}	W_{k}
1	0.0	2.0
2	$-1 / \sqrt{3}=-0.577350269189626$	1.0
	$1 / \sqrt{3}=0.577350269189626$	1.0
	$-\sqrt{0.6}=-0.774596669241483$	$5 / 9=0.5555555555555555$
3	0.0	$8 / 9=0.888888888888889$
	$\sqrt{0.6}=0.774596669241483$	$5 / 9=0.5555555555555555$
	-0.861136311594953	0.347854845137454
4	-0.339981043584856	0.652145154862546
	0.339981043584856	0.652145154862546
	0.861136311594953	0.347854845137454

- $\quad N G P$ point GQ integration can evaluate $(2 N G P-1)$ order polynomial functions exactly.

Example 3.2

e.g. Example 3.2 Evaluate K_{11}^{1} and F_{1}^{1} of Example 3.1 using GQ integration.

$$
\begin{aligned}
K_{11}^{1} & =\int_{-1}^{1}\left(\frac{d S_{1}}{d \xi} \frac{1}{J^{e}} \frac{d S_{1}}{d \xi} \frac{1}{J^{e}}-S_{1} S_{1}\right) J^{e} d \xi \\
& =\int_{-1}^{1}\left[(-0.5) \frac{1}{0.125}(-0.5) \frac{1}{0.125}-\left(\frac{1-\xi}{2}\right)\left(\frac{1-\xi}{2}\right)\right](0.125) d \xi \\
& =\int_{-1}^{1} \underbrace{\left(\frac{-\xi^{2}+2 \xi+63}{32}\right)}_{g(\xi)} d \xi
\end{aligned}
$$

- Using 1 point GQ: $\quad K_{11}^{1}=2 g(0)=3.9375$
- Using 2 point GQ: $K_{11}^{1}=g\left(-\frac{1}{\sqrt{3}}\right)+g\left(\frac{1}{\sqrt{3}}\right)=3.9167$
- Using 3 point GQ: $\left.K_{11}^{1}=\frac{5}{9} g(-\sqrt{0.6})+\frac{8}{9} g(0)+\frac{5}{9} g(\sqrt{0.6})=3.9167\right\}$ exact

Example 3.2 (cont'd)

$$
\begin{aligned}
F_{1}^{1} & =\int_{-1}^{1} S_{1} f(\xi) J^{e} d \xi \\
& =\int_{-1}^{1}-\left(\frac{1-\xi}{2}\right)\left(\frac{\xi+1}{8}\right)^{2}(0.125) d \xi \\
& =\int_{-1}^{1} \underbrace{\left(\frac{\xi^{3}+\xi^{2}-\xi-1}{1024}\right)}_{g(\xi)} d \xi
\end{aligned}
$$

- Using 1 point GQ: $F_{1}^{1}=2 g(0)=-0.0019531$
- Using 2 point GQ : $F_{1}^{1}=g\left(-\frac{1}{\sqrt{3}}\right)+g\left(\frac{1}{\sqrt{3}}\right)=-0.0013021$
- Using 3 point GQ : $\left.F_{1}^{1}=\frac{5}{9} g(-\sqrt{0.6})+\frac{8}{9} g(0)+\frac{5}{9} g(\sqrt{0.6})=-0.0013021\right\}$

Both are exact

