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Summary of Chapter 2

• In Chapter 2 Ritz method was improved into FEM.

• Solution is not global anymore.

• Solution over each element is simple. Complicated 2D and 3D solutions on complex 
domains can be obtained, by using necessary number of elements.

• Problems with multiple materials can be solved.

• Approximation function selection is very well defined and independent of BCs.

• But the procedure of Chapter 2 still have difficulties.

• Writing approximation functions one-by-one for each node is difficult. In 2D and 3D 
it’ll be even more difficult.

• Approximation functions change when mesh changes.

• Symbolic math is limited and costly.

Exercise : Modify Example2_1v2.m code so that it asks the user to enter 𝑁𝐸 and 
works automatically. Using tic & toc commands, measure computation time for 
𝑁𝐸 = 5, 10, 50, 100, 1000. Improve the speed of the code in any way you can.
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What Is This Chapter About?

• We’ll improve the solution procedure of Chapter 2 so that

• it is almost completely mesh independent

• approximation function calculations are easy

• symbolic calculations are avoided

• solution is efficient and very algorithmic

• To achieve these we’ll use

• Elemental weak form

• Master element concept

• Gauss Quadrature numerical integration
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Node Based Integral Calculation of Chapter 2

• In FEM 𝜙’s have local support.

• For linear elements, 𝜙’s are nonzero over at most two elements.

• Integral of the 𝑖𝑡ℎ eqn. contains 𝜙𝑖 in all its terms (see slide 2-12).

• But 𝜙𝑖 is nonzero only over elements e-1 and e.

• Therefore integral calculations simplify as follows

Integral of eqn. i : 𝐼𝑖 =  
Ω

𝑓 𝜙𝑖 𝑑𝑥 =  
Ω𝑒−1

𝑓 𝜙𝑖 𝑑𝑥 +  
Ω𝑒
𝑓 𝜙𝑖 𝑑𝑥
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i

e
𝑥

e-1 e+1

𝜙𝑖

i-2 i-1 i+1

e+2

i+2 i+3

e-2

i-3

e-3

Over the whole 
problem domain

Over element e-1 
only

Over element e 
only



Node Based Integral Calculation of Chapter 2 (cont’d)

• For a 5 node mesh

• All integrals are

𝐼1 =  
Ω1
𝑓 𝜙1 𝑑𝑥

𝐼2 =  
Ω1
𝑓 𝜙2 𝑑𝑥 +  

Ω2
𝑓 𝜙2 𝑑𝑥

𝐼3 =  
Ω2
𝑓 𝜙3 𝑑𝑥 +  

Ω3
𝑓 𝜙3 𝑑𝑥

𝐼4 =  
Ω3
𝑓 𝜙4 𝑑𝑥 +  

Ω4
𝑓 𝜙4 𝑑𝑥

𝐼5 =  
Ω4
𝑓 𝜙5 𝑑𝑥
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i=1      i=2      i=3  i=4 i=5
𝑥

1
𝜙1 𝜙2 𝜙3 𝜙4 𝜙5

• This is node based thinking.

• We evaluate the integral of 
each equation, which are 
associated with one node 
and one 𝜙.

• In FEM codes we prefer 
element based operations.



New Element Based Integral Calculation

• Instead of thinking about each equation individually, concentrate on elements and 

determine the contribution of each element to each equation.

𝐼1 =  
Ω1
𝑓 𝜙1 𝑑𝑥

𝐼2 =  
Ω1
𝑓 𝜙2 𝑑𝑥 +  

Ω2
𝑓 𝜙2 𝑑𝑥

𝐼3 =  
Ω2
𝑓 𝜙3 𝑑𝑥 +  

Ω3
𝑓 𝜙3 𝑑𝑥

𝐼4 =  
Ω3
𝑓 𝜙4 𝑑𝑥 +  

Ω4
𝑓 𝜙4 𝑑𝑥

𝐼5 =  
Ω4
𝑓 𝜙5 𝑑𝑥
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e=1       e=2      e=3      e=4 𝑥

1e=1 contributes 
to 𝐼1 and 𝐼2

e=2 contributes 
to 𝐼2 and 𝐼3

e=3 contributes 
to 𝐼3 and 𝐼4

e=4 contributes 
to 𝐼4 and 𝐼5



• For the following model DE

−
𝑑

𝑑𝑥
𝑎
𝑑𝑢

𝑑𝑥
+ 𝑏

𝑑𝑢

𝑑𝑥
+ 𝑐𝑢 = 𝑓 , 0 < 𝑥 < 𝐿

weak form is

 
0

𝐿

𝑎
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
+ 𝑏𝑤

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 𝑑𝑥 =  

0

𝐿

𝑤𝑓 𝑑𝑥 + 𝑤𝑎
𝑑𝑢

𝑑𝑥
𝐿

𝑄𝐿

− 𝑤𝑎
𝑑𝑢

𝑑𝑥
0

𝑄0

• In Chapter 2 FE solution of this resulted in a 𝑁𝑁 × 𝑁𝑁 global system

𝐾 𝑢 = 𝐹 + 𝑄

• The new idea is to

• write weak form over each element individually

• obtain elemental systems

• add them up to get the global system

Elemental Thinking
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• Consider the following linear element

• Elemental weak form of the model DE is

 
𝑥1
𝑒

𝑥2
𝑒

𝑎
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
+ 𝑏𝑤

𝑑𝑢

𝑑𝑥
+ 𝑐𝑤𝑢 𝑑𝑥 =  

𝑥1
𝑒

𝑥2
𝑒

𝑤𝑓 𝑑𝑥 + 𝑤
𝑑𝑢

𝑑𝑥
𝑥2
𝑒

− 𝑤
𝑑𝑢

𝑑𝑥
𝑥1
𝑒

which will result in the following 𝑁𝑁 × 𝑁𝑁 elemental system

𝐾𝑒 𝑢 = 𝐹𝑒 + 𝑄𝑒

Local Node Numbering and Elemental Weak Form
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i e 𝑥
i+1

𝑥𝑖 𝑥𝑖+1

Global node 
numbers

1 e 𝑥
2

𝑥1
𝑒 𝑥2

𝑒

Local node 
numbers



𝐾𝑒 𝑢 = 𝐹𝑒 + 𝑄𝑒

• Elemental systems are sparse.

• On a mesh of 4 linear elements

Elemental System
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e=1       e=2      e=3      e=4
𝑥

1

⨂ ⨂ ⋅ ⋅ ⋅
⨂ ⨂ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⨂
⨂
⋅
⋅
⋅

=

⨂
⨂
⋅
⋅
⋅

+ 

⨂
⨂
⋅
⋅
⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⨂ ⨂ ⋅
⋅ ⋅ ⨂ ⨂ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅
⋅
⨂
⨂
⋅

=

⋅
⋅
⨂
⨂
⋅

+ 

⋅
⋅
⨂
⨂
⋅

For e=1

For e=3

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⨂ ⨂ ⋅ ⋅
⋅ ⨂ ⨂ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅
⨂
⨂
⋅
⋅

=

⋅
⨂
⨂
⋅
⋅

+ 

⋅
⨂
⨂
⋅
⋅

For e=2

For e=4
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⨂ ⨂
⋅ ⋅ ⋅ ⨂ ⨂

⋅
⋅
⋅
⨂
⨂

=

⋅
⋅
⋅
⨂
⨂

+ 

⋅
⋅
⋅
⨂
⨂



• Each elemental system contributes to only 2 eqns of the global system.

• It is better to think of elemental systems as 𝑁𝐸𝑁 × 𝑁𝐸𝑁, instead of 𝑁𝑁 × 𝑁𝑁

where 𝑁𝐸𝑁 is the number of element’s nodes (=2 for linear elements)

𝐾𝑒 𝑢𝑒 = 𝐹𝑒 + 𝑄𝑒

• For example for e=3, small elemental system is

𝐾11
3 𝐾12

3

𝐾21
3 𝐾22

3

𝑢1
3

𝑢2
3 =

𝐹1
3

𝐹2
3 +

𝑄1
3

𝑄2
3

Small Elemental Systems of Size NEN x NEN
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⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⨂ ⨂ ⋅
⋅ ⋅ ⨂ ⨂ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅
⋅
⨂
⨂
⋅

=

⋅
⋅
⨂
⨂
⋅

+ 

⋅
⋅
⨂
⨂
⋅

Elemental stiffness 
matrix

𝑁𝐸𝑁 × 𝑁𝐸𝑁

Elemental unknown 
vector

𝑁𝐸𝑁 × 1

Elemental force 
vector

𝑁𝐸𝑁 × 1

Elemental boundary 
term vector
𝑁𝐸𝑁 × 1

Assembly 
operation



From Approximation Functions to Shape Functions
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𝜙𝑖+1

i

e
𝑥

e-1 e+1

𝜙𝑖

i-2 i-1 i+1

e+2

i+2 i+3

e-2
Node based 

thinking

i
e 𝑥

i+1

Element based 
thinking

1
e 𝑥

2

𝑆1
𝑒 𝑆2

𝑒

ℎ𝑒 = 𝑥𝑖+1 − 𝑥𝑖 = 𝑥2
𝑒 − 𝑥1

𝑒

Shape functions
1



Shape Functions
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𝑥1
𝑒

e 𝑥
𝑥2
𝑒

𝑆1
𝑒 𝑆2

𝑒

1

• Similar to 𝜙’s, shape functions also have the 
Kronecker-delta property

𝑆𝑖
𝑒 𝑥𝑗

𝑒 =  
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

• For a linear element shape functions are

𝑆1
𝑒 =

𝑥2
𝑒 − 𝑥

ℎ𝑒
, 𝑆2

𝑒 =
𝑥 − 𝑥1

𝑒

ℎ𝑒

• FE solution over element e is

𝑢𝑒 =  

𝑗=1

𝑁𝐸𝑁

𝑢𝑗
𝑒 𝑆𝑗

𝑒

Number of element’s  
nodes (=2 for linear 
elements)

Nodal unknown at 
element e’s 𝑗𝑡ℎ node

e

𝑢1
𝑒

𝑆1
𝑒

𝑆2
𝑒

𝑢2
𝑒

𝑢𝑒

1

𝑥



• Difficulties with these shape functions are

• For each element they will be different
functions of 𝑥.

• Integration over an element will have 
limits of 𝑥1

𝑒 and 𝑥2
𝑒 , which are not 

appropriate for Gauss Quadrature 
integration.

Shape Functions (cont’d)
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• The cure is to use the concept of master element.

𝑥1
𝑒

e 𝑥
𝑥2
𝑒

𝑆1
𝑒 𝑆2

𝑒

1



Master Element
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• 1D, linear master element is defined using the local coordinate 𝜉 (ksi).

• For all linear elements in a 1D mesh, there is only a single master element.

• Master element has a length of 2.

• End points are 𝜉 = −1 and 𝜉 = 1, which are suitable for Gauss Quadrature.

Node 1 Node 2

𝑆1(𝜉) 𝑆2(𝜉)

1

𝜉

2

𝜉 = -1 𝜉 = 1

Superscript 
‘‘e’’ is NOT 
necessary 
here

𝑆1 =
1 − 𝜉

2

𝑆2 =
1 + 𝜉

2



• If a mesh has only linear elements, than we only need to define 2 shape functions.

• This is a great simplification, but it comes with a price.

Mapping Between an Actual Element & Master Element
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• In order to express everything in the 
integrals in terms of 𝜉, we need to obtain 
the relation between the global 𝑥
coordinate and the local 𝜉 coordinate.

• This relation is linear as shown

𝑥 = 𝐴𝜉 + 𝐵

• Using the fact that end points of the actual 
element coincide with those of the master 
element, we get

𝑥 =
ℎ𝑒

2
𝜉 +

𝑥1
𝑒 + 𝑥2

𝑒

2

𝑥1
𝑒 𝑥2

𝑒

𝑥

An actual element 
of length ℎ𝑒

𝜉
𝜉 = −1 𝜉 = 1

Master element 
of length 2

𝑥(𝜉) =?

This relation is different for 
each and every element



• In the integrals of the weak form we have the first derivative of 𝑢.

𝑢𝑒 =  

𝑗=1

𝑁𝐸𝑁

𝑢𝑗
𝑒𝑆𝑗 →

𝑑𝑢𝑒

𝑑𝑥
=  

𝑗=1

𝑁𝐸𝑁

𝑢𝑗
𝑒
𝑑𝑆𝑗

𝑑𝑥

• Master element shape functions are written in terms of 𝜉.

• Therefore 𝑥 derivatives should be expressed in terms of 𝜉 derivatives.

𝑑𝑆𝑗

𝑑𝑥
=

𝑑𝑆𝑗

𝑑𝜉

𝑑𝜉

𝑑𝑥

• 𝐽𝑒 =
𝑑𝑥

𝑑𝜉
=

ℎ𝑒

2
is the Jacobian of element e. It is the ratio of actual element’s length to  

the length of the master element.

Jacobian of an Element
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=
2

ℎ𝑒 (using the boxed 

equation of the previous slide.

𝑑𝑆1
𝑑𝜉

= −0.5 ,
𝑑𝑆2
𝑑𝜉

= 0.5



Example 3.1 Solve the following problem using a uniform mesh of 4 linear 
elements of length ℎ𝑒 = 0.25.

−
𝑑2𝑢

𝑑𝑥2
− 𝑢 = −𝑥2 , 0 < 𝑥 < 1

𝑢 0 = 0 , 𝑢 1 = 0

• Elemental weak form is

 
𝑥1
𝑒

𝑥2
𝑒

𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
− 𝑤𝑢 𝑑𝑥 =  

𝑥1
𝑒

𝑥2
𝑒

−𝑤𝑥2 𝑑𝑥 + 𝑤
𝑑𝑢

𝑑𝑥
𝑥2
𝑒

− 𝑤
𝑑𝑢

𝑑𝑥
𝑥1
𝑒

• To get 2x2 elemental system of eqns, substitute the following approximate solution 
into the elemental weak form

𝑢 =  

𝑗=1

𝑁𝐸𝑁

𝑢𝑗
𝑒𝑆𝑗

Example 3.1
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e.g.



 
Ω𝑒

𝑑

𝑑𝑥
 𝑢𝑗

𝑒𝑆𝑗
𝑑𝑤

𝑑𝑥
− 𝑤 𝑢𝑗

𝑒𝑆𝑗 𝑑𝑥 =  
Ω𝑒
−𝑤𝑥2 𝑑𝑥 + 𝑤

𝑑𝑢

𝑑𝑥
𝑥2
𝑒

− 𝑤
𝑑𝑢

𝑑𝑥
𝑥1
𝑒

• Elemental system is 2x2 and we need 2 weight functions to get it.

• In GFEM   𝑤1 = 𝑆1 ,  𝑤2 = 𝑆2

Eqn 1 :  
Ω𝑒

𝑑

𝑑𝑥
 𝑢𝑗

𝑒𝑆𝑗
𝑑𝑆1
𝑑𝑥

− 𝑆1 𝑢𝑗
𝑒𝑆𝑗 𝑑𝑥 =  

Ω𝑒
−𝑆1𝑥

2 𝑑𝑥 +  𝑆1
0

𝑑𝑢

𝑑𝑥
𝑥2
𝑒

0

−  𝑆1
1

𝑑𝑢

𝑑𝑥
𝑥1
𝑒

𝑄1
𝑒

Eqn 2 :  
Ω𝑒

𝑑

𝑑𝑥
 𝑢𝑗

𝑒𝑆𝑗
𝑑𝑆2
𝑑𝑥

− 𝑆2 𝑢𝑗
𝑒𝑆𝑗 𝑑𝑥 =  

Ω𝑒
−𝑆2𝑥

2 𝑑𝑥 +  𝑆2
1

𝑑𝑢

𝑑𝑥
𝑥2
𝑒

𝑄2
𝑒

−  𝑆1
0

𝑑𝑢

𝑑𝑥
𝑥1
𝑒

0

• In general the 𝑖𝑡ℎ eqn of element e is obtained by using 𝑤 = 𝑆𝑖

Eqn i :  
Ω𝑒

 𝑢𝑗
𝑒
𝑑𝑆𝑗

𝑑𝑥

𝑑𝑆𝑖
𝑑𝑥

− 𝑆𝑖  𝑢𝑗
𝑒𝑆𝑗 𝑑𝑥 =  

Ω𝑒
−𝑆𝑖𝑥

2 𝑑𝑥 + 𝑄𝑖
𝑒

Example 3.1 (cont’d)
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• Change the integration parameter from 𝑥 to 𝜉 (refer to slide 3-16)

Eqn i :  
−1

1

 𝑢𝑗
𝑒
𝑑𝑆𝑗

𝑑𝑥

𝑑𝑆𝑖
𝑑𝑥

− 𝑆𝑖  𝑢𝑗
𝑒𝑆𝑗 𝑑𝑥 =  

−1

1

−𝑆𝑖𝑥
2 𝑑𝑥 + 𝑄𝑖

𝑒

Eqn i :  
−1

1

 𝑢𝑗
𝑒
𝑑𝑆𝑗

𝑑𝜉

1

𝐽𝑒
𝑑𝑆𝑖
𝑑𝜉

1

𝐽𝑒
− 𝑆𝑖  𝑢𝑗

𝑒𝑆𝑗 𝐽𝑒𝑑𝜉 =  
−1

1

𝑆𝑖 𝑓 𝜉 𝐽𝑒𝑑𝜉 + 𝑄𝑖
𝑒

• Take the summation sign outside the integral and take the integrand into 𝑢𝑗
𝑒

paranthesis.

Eqn i :   
−1

1 𝑑𝑆𝑖
𝑑𝜉

1

𝐽𝑒
𝑑𝑆𝑗

𝑑𝜉

1

𝐽𝑒
− 𝑆𝑖𝑆𝑗 𝐽𝑒𝑑𝜉 𝑢𝑗

𝑒 =  
−1

1

𝑆𝑖 𝑓 𝜉 𝐽𝑒𝑑𝜉 + 𝑄𝑖
𝑒

Example 3.1 (cont’d)
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𝑑𝑆

𝑑𝑥
=

𝑑𝑆

𝑑𝜉

1

𝐽𝑒

𝑑𝑥 = 𝐽𝑒𝑑𝜉

𝑥 =
ℎ𝑒

2
𝜉 +

𝑥1
𝑒 + 𝑥2

𝑒

2



Eqn i :   
−1

1 𝑑𝑆𝑖
𝑑𝜉

1

𝐽𝑒
𝑑𝑆𝑗

𝑑𝜉

1

𝐽𝑒
− 𝑆𝑖𝑆𝑗 𝐽𝑒𝑑𝜉 𝑢𝑗

𝑒 =  
−1

1

𝑆𝑖 𝑓 𝜉 𝐽𝑒𝑑𝜉 + 𝑄𝑖
𝑒

• Summation sign is over 𝑗 = 1, 2.

• 𝑖 index also goes from 1 to 2.

• 𝑖 = 1 gives the first equation, 𝑖 = 2 gives the second equation.

• 2x2 elemental system is   𝐾𝑒 𝑢 = 𝐹𝑒 + 𝑄𝑒

• We don’t need to do any calculations for 𝑄𝑖
𝑒 values (Details will come).

Example 3.1 (cont’d)
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𝐾𝑖𝑗
𝑒 𝐹𝑖

𝑒



• For each element ℎ𝑒 = 0.25.

• Jacobian for each element is 𝐽𝑒 = ℎ𝑒/2 = 0.125

• All elements are linear. Shape functions and their derivatives are

𝑆1 =
1 − 𝜉

2
, 𝑆2 =

1 + 𝜉

2

𝑑𝑆1
𝑑𝜉

= −0.5 ,
𝑑𝑆2
𝑑𝜉

= 0.5

• We need everything to evalute the entries of 𝐾𝑒 and 𝐹𝑒 one-by-one for each element.

Example 3.1 (cont’d)
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1 2                  3                 4                  5
𝑥

0.25 𝑥 = 1



𝐾𝑖𝑗
𝑒 =  

−1

1 𝑑𝑆𝑖
𝑑𝜉

1

𝐽𝑒
𝑑𝑆𝑗

𝑑𝜉

1

𝐽𝑒
− 𝑆𝑖𝑆𝑗 𝐽𝑒𝑑𝜉

• For e=1

𝐾11
1 =  

−1

1 𝑑𝑆1
𝑑𝜉

1

𝐽𝑒
𝑑𝑆1
𝑑𝜉

1

𝐽𝑒
− 𝑆1𝑆1 𝐽𝑒𝑑𝜉 =

47

12

𝐾12
1 =  

−1

1 𝑑𝑆1
𝑑𝜉

1

𝐽𝑒
𝑑𝑆2
𝑑𝜉

1

𝐽𝑒
− 𝑆1𝑆2 𝐽𝑒𝑑𝜉 = −

97

24

𝐾21
1 = 𝐾12

1 ([𝐾𝑒] is symmetric. Interchange 𝑖 & 𝑗 and see)

𝐾22
1 =  

−1

1 𝑑𝑆2
𝑑𝜉

1

𝐽𝑒
𝑑𝑆2
𝑑𝜉

1

𝐽𝑒
− 𝑆2𝑆2 𝐽𝑒𝑑𝜉 =

47

12

Example 3.1 (cont’d)
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𝐾1 =

47

12
−
97

24

−
97

24

47

12



• No need to calculate [𝐾2] , [𝐾3] or [𝐾4] .

• They will all be equal to [𝐾1]. This is a special case for this problem. Can you see why?

• Let’s start {𝐹𝑒} calculations.

𝐹𝑖
𝑒 =  

−1

1

𝑆𝑖 𝑓 𝜉 𝐽𝑒𝑑𝜉

• For e=1 :

𝑓 = −
ℎ𝑒

2
𝜉 +

𝑥1
𝑒 + 𝑥2

𝑒

2

2

= −
𝜉 + 1

8

2

𝐹1
1 =  

−1

1

𝑆1 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
1

768
, 𝐹2

1 =  
−1

1

𝑆2 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
3

768

Example 3.1 (cont’d)
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𝑓 𝜉 = − 𝑥 𝜉 2



• For e=2 : 𝑓 = −
𝜉+3

8

2

𝐹1
2 =  

−1

1

𝑆1 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
11

768
, 𝐹2

2 =  
−1

1

𝑆2 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
17

768

• For e=3 : 𝑓 =? (find yourself)

𝐹1
3 =  

−1

1

𝑆1 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
33

768
, 𝐹2

3 =  
−1

1

𝑆2 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
43

768

• For e=4 : 𝑓 =? (find yourself)

𝐹1
4 =  

−1

1

𝑆1 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
67

768
, 𝐹2

4 =  
−1

1

𝑆2 𝑓 𝜉 𝐽𝑒𝑑𝜉 = −
81

768

Example 3.1 (cont’d)
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• Four elemental systems are

For e=1 :
1

24
94 −97
−97 94

𝑢1
1

𝑢2
1 = −

1

768
1
3

+
𝑄1
1

𝑄2
1

For e=2 :
1

24
94 −97
−97 94

𝑢1
2

𝑢2
2 = −

1

768
11
17

+
𝑄1
2

𝑄2
2

For e=3 :
1

24
94 −97
−97 94

𝑢1
3

𝑢2
3 = −

1

768
33
43

+
𝑄1
3

𝑄2
3

For e=4 :
1

24
94 −97
−97 94

𝑢1
4

𝑢2
4 = −

1

768
67
81

+
𝑄1
4

𝑄2
4
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e=1       e=2      e=3      e=4
𝑥

1

Example 3.1 (cont’d)



• Assemble elemental systems into 5x5 global system (see slide 3-9).

Example 3.1 (cont’d)
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e=1       e=2      e=3      e=4
𝑥

1

𝐾11
1 𝐾12

1 0 0 0

𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2 0 0

0 𝐾21
2 𝐾22

2 + 𝐾11
3 𝐾12

3 0

0 0 𝐾21
3 𝐾22

3 + 𝐾11
4 𝐾12

4

0 0 0 𝐾21
4 𝐾22

4

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

=

𝐹1
1

𝐹2
1 + 𝐹1

2

𝐹2
2 + 𝐹1

3

𝐹2
3 + 𝐹1

4

𝐹2
4

+

𝑄1
1

𝑄2
1 + 𝑄1

2

𝑄2
2 + 𝑄1

3

𝑄2
3 + 𝑄1

4

𝑄2
4



• Put the numbers in to get

Example 3.1 (cont’d)

METU  – Dept. of Mechanical Engineering  – ME 413 Int. to Finite Element Analysis  – Lecture Notes of Dr. Sert 3-27

e=1       e=2      e=3      e=4
𝑥

1

1

24

94 −97
−97 94 + 94 −97

−97 94 + 94 −97
−97 94 + 94 −97

−97 94

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

= −
1

768

1
3 + 11
17 + 33
43 + 67

81

+

𝑄1
1

𝑄2
1 + 𝑄1

2

𝑄2
2 + 𝑄1

3

𝑄2
3 + 𝑄1

4

𝑄2
4

• Balance of secondary variables :

𝑄2
1 + 𝑄1

2 =
𝑑𝑢

𝑑𝑥
𝑥2
1

+ −
𝑑𝑢

𝑑𝑥
𝑥1
2

= 0

𝑄2
2 + 𝑄1

3 =
𝑑𝑢

𝑑𝑥
𝑥2
2

+ −
𝑑𝑢

𝑑𝑥
𝑥1
3

= 0

𝑄2
3 + 𝑄1

4 =
𝑑𝑢

𝑑𝑥
𝑥2
3

+ −
𝑑𝑢

𝑑𝑥
𝑥1
4

= 0



• Global system is

1

24

94 −97
−97 188 −97

−97 188 −97
−97 188 −97

−97 94

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

= −
1

768

1
14
50
110
81

+

𝑄1

0
0
0
𝑄5

• 𝑢1 and 𝑢5 are known.

• Reduce the system by dropping the 1st and 5th equations.

1

24

188 −97
−97 188 −97

−97 188

𝑢2
𝑢3
𝑢4

= −
1

768

14
50
110

+
0
0
0

• FE solution is
𝑢2
𝑢3
𝑢4

=
−0.0232
−0.0405
−0.0392

Example 3.1 (cont’d)
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• Reduction is not easy to implement in a computer code.

• A simpler technique is to keep the 1st and 5th eqns, but modify them as follows

1 0 0 0 0
𝐾21 𝐾22 𝐾23 𝐾24 𝐾25

𝐾31 𝐾32 𝐾33 𝐾34 𝐾35

𝐾41 𝐾42 𝐾43 𝐾44 𝐾45

0 0 0 0 1

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

=

𝑈1

0
0
0
𝑈5

+

0
0
0
0
0

• Disadvantages are

• symmetry of [K] is lost.

• an unnecessarily large system is solved.

Apply EBCs without Reduction
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Equate diagonal entries to 1,
and non-diagonal entries to zero

These are the 
specified values 

of 𝑢1 and 𝑢5

Equate 
unknown 
𝑄’s to zero.



• A third alternative for EBCs modifies 1st and 5th eqns as follows

𝐿 × 𝐾11 𝐾12 𝐾13 𝐾14 𝐾15

𝐾21 𝐾22 𝐾23 𝐾24 𝐾25

𝐾31 𝐾32 𝐾33 𝐾34 𝐾35

𝐾41 𝐾42 𝐾43 𝐾44 𝐾45

𝐾51 𝐾52 𝐾53 𝐾54 𝐿 × 𝐾55

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

=

𝐿 × 𝐾11 × 𝑈1

𝐹2
𝐹3
𝐹4

𝐿 × 𝐾55 × 𝑈5

+

0
0
0
0
0

where 𝐿 is large enough number.

• If 𝐿 is large enough the 1st and 5th eqns simplify to

𝐿𝐾11𝑢1 + Negligibly small terms = 𝐿𝐾11𝑈1 → 𝑢1 = 𝑈1

𝐿𝐾55𝑢5 + Negligibly small terms = 𝐿𝐾55𝑈5 → 𝑢5 = 𝑈5

• This technique preserves possible symmetry of [𝐾].

Apply EBCs without Reduction (cont’d)
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• If a NBC is provided, the specified 𝑄 value is used in the global system.

• Similar to the Ritz method, NBCs are satisfied not exactly, but approximately.

• Be careful in determining the SV correctly.

• If a heat conduction problem is formulated starting from

−
𝑑

𝑑𝑥
𝑘𝐴

𝑑𝑇

𝑑𝑥
+ . . . . . . = 0

then   𝑄1 = − 𝑘𝐴
𝑑𝑇

𝑑𝑥 0
and    𝑄𝑁𝑁 = 𝑘𝐴

𝑑𝑇

𝑑𝑥 𝐿

• If in the same problem 𝑘𝐴 is constant and dropped from the DE

−
𝑑

𝑑𝑥

𝑑𝑇

𝑑𝑥
+ . . . . . . = 0

then   𝑄1 = −
𝑑𝑇

𝑑𝑥 0
and    𝑄𝑁𝑁 =

𝑑𝑇

𝑑𝑥 𝐿

NBCs
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SV is heat in Watts

SV is temperature 
gradient in K/m



• Put the given mixed BC into the form

𝑆𝑉 = 𝛼𝑃𝑉 + 𝛽

where 𝛼 and 𝛽 are known values.

• Use  𝛼𝑃𝑉 + 𝛽 in the proper place of the 𝑄 vector.

• Transfer 𝛼𝑃𝑉 to the [K] matrix and leave 𝛽 on the RHS of the global system.

• If a mixed BC is given at the 5th (last) node of a 4 element mesh 

𝐾11 𝐾12 𝐾13 𝐾14 𝐾15

𝐾21 𝐾22 𝐾23 𝐾24 𝐾25

𝐾31 𝐾32 𝐾33 𝐾34 𝐾35

𝐾41 𝐾42 𝐾43 𝐾44 𝐾45

𝐾51 𝐾52 𝐾53 𝐾54 𝐾55

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

=

𝐹1
𝐹2
𝐹3
𝐹4
𝐹5

+

𝑄1

0
0
0

𝛼𝑢5 + 𝛽

MBCs
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Modify 𝐾55 as 
𝐾55 − 𝛼



• In FEM integrals similar to the following ones need to be evaluated

𝐾𝑖𝑗
𝑒 =  

−1

1 𝑑𝑆𝑖
𝑑𝜉

1

𝐽𝑒
𝑑𝑆𝑗

𝑑𝜉

1

𝐽𝑒
− 𝑆𝑖𝑆𝑗 𝐽𝑒𝑑𝜉 , 𝐹𝑖

𝑒 =  
−1

1

𝑆𝑖 𝑓 𝜉 𝐽𝑒𝑑𝜉

• The limits [-1,1] are suitable for GQ integration, which converts an integral into a 
summation

𝐼 =  
−1

1

𝑔 𝜉 𝑑𝜉 =  

𝑘=1

𝑁𝐺𝑃

𝑔(𝜉𝑘)𝑊𝑘

Gauss Quadrature (GQ) Integration
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Number of GQ points

GQ weights

Coordinates 
of GQ points



• GQ points and weights for different 𝑁𝐺𝑃 values are

• 𝑁𝐺𝑃 point GQ integration can evaluate (2 𝑁𝐺𝑃 − 1) order polynomial functions 
exactly.

GQ Integration (cont’d)
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NGP 𝝃𝒌 𝑾𝒌

1 0.0 2.0

2
−1/ 3 = −0.577350269189626

1/ 3 = 0.577350269189626

1.0
1.0

3
− 0.6 = −0.774596669241483

0.0

0.6 = 0.774596669241483

5/9 = 0.555555555555555
8/9 = 0.888888888888889
5/9 = 0.555555555555555

4

− 0.861136311594953
− 0.339981043584856

0.339981043584856
0.861136311594953

0.347854845137454
0.652145154862546
0.652145154862546
0.347854845137454



Example 3.2
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Example 3.2 Evaluate 𝐾11
1 and 𝐹1

1 of Example 3.1 using GQ integration.

𝐾11
1 =  

−1

1 𝑑𝑆1
𝑑𝜉

1

𝐽𝑒
𝑑𝑆1
𝑑𝜉

1

𝐽𝑒
− 𝑆1𝑆1 𝐽𝑒𝑑𝜉

=  
−1

1

(−0.5)
1

0.125
(−0.5)

1

0.125
−

1 − 𝜉

2

1 − 𝜉

2
0.125 𝑑𝜉

=  
−1

1 −𝜉2 + 2𝜉 + 63

32

𝑔(𝜉)

𝑑𝜉

• Using 1 point GQ :     𝐾11
1 = 2𝑔 0 = 3.9375

• Using 2 point GQ :     𝐾11
1 = 𝑔 −

1

3
+ 𝑔

1

3
= 3.9167

• Using 3 point GQ :     𝐾11
1 =

5

9
𝑔 − 0.6 +

8

9
𝑔 0 +

5

9
𝑔 0.6 = 3.9167

e.g.

Both are 
exact



Example 3.2 (cont’d)
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𝐹1
1 =  

−1

1

𝑆1 𝑓 𝜉 𝐽𝑒𝑑𝜉

=  
−1

1

−
1 − 𝜉

2

𝜉 + 1

8

2

0.125 𝑑𝜉

=  
−1

1 𝜉3 + 𝜉2 − 𝜉 − 1

1024

𝑔(𝜉)

𝑑𝜉

• Using 1 point GQ :  𝐹1
1 = 2𝑔 0 = −0.0019531

• Using 2 point GQ : 𝐹1
1 = 𝑔 −

1

3
+ 𝑔

1

3
= −0.0013021

• Using 3 point GQ : 𝐹1
1 =

5

9
𝑔 − 0.6 +

8

9
𝑔 0 +

5

9
𝑔 0.6 = −0.0013021

Both are 
exact


